UNIVERSIDADE FEDERAL DO PARANÁ

JÚLIO CÉSAR OLIVEIRA

CRIAÇÃO DE UM DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS PARA TESTES DE POSICIONAMENTO COM UTILIZAÇÃO DE ESTAÇÕES TOTAIS

CURITIBA JUNHO/2017 JÚLIO CÉSAR OLIVEIRA

CRIAÇÃO DE UM DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS PARA TESTES DE POSICIONAMENTO COM UTILIZAÇÃO DE ESTAÇÕES TOTAIS

Projeto Final apresentado ao Curso de Engenharia Cartográfica e de Agrimensura, Setor Ciências da Terra, Universidade Federal do Paraná -UFPR.

Orientador: Prof. Dr. Wander da Cruz

Co-orientador: Prof. Dr. Luis Augusto Koenig Veiga

CURITIBA JUNHO/2017

TERMO DE APROVAÇÃO

JÚLIO CÉSAR OLIVEIRA

CRIAÇÃO DE UM DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS PARA TESTES DE POSICIONAMENTO COM UTILIZAÇÃO DE ESTAÇÕES TOTAIS

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia Cartográfica e de Agrimensura da Universidade Federal do Paraná como requisito à obtenção do título de obtenção de grau de Engenheiro Cartógrafo e Agrimensor, pela seguinte banca examinadora:

Orientador: Prof. Dr. Wander da Cruz Departamento de Geomática – UFPR Co-orientador: Prof. Dr. Luis Augusto Koenig Veiga Departamento de Geomática – UFPR Banca: Prof. Dr. Pedro LuisFaggion Departamento de Geomática – UFPR

Curitiba, 07 de Julho de 2017.

Dedico este trabalho de conclusão de curso, em memória das pessoas mais guerreira e lutadora que conheci, Cecília Tavares da Silva, a bisa Ciça e Arino Pedro de Oliveira, o vô Arinos.

AGRADECIMENTOS

Agradeço primeiramente a DEUS, pela nossa existência, porque nada é possível se não for de sua vontade e a minha força de vontade que me fez chegar até nesse momento da minha vida.

A minha Família que, nos momentos de ausência dedicada ao estudo, sempre fez entender que o futuro é feito a partir da constante dedicação no presente, principalmente a minha mãe Maria Cecília da Silva Oliveira, ao meu falecido pai Pedro Dias de Oliveira, as minhas irmãs Laura e Cristine, ao meu irmão Pedro Henrique, aos meus tio e tias, em especial ao tio Luis Carlos que é meu segundo pai, primos e primas, madrinhas e padrinhos e a minha segunda família que me acolheu como sendo um filho, em especial a dona CireneKailler, na qual considero minha segunda mãe tanto que escolhi como minha madrinha e meu irmão de coração DangeloKailler, que me deu a oportunidade de ser padrinhos de seus filhos, minha afilhada Ana Clara e meu afilhado Miguel Ângelo.

Aos amigos, que por gestos e atitudes, diariamente ressaltam o significado do verdadeiro sentimento de amizade, tanto perto, quanto distante, em especial, Ana Paula Ramos da Silva, André Damasceno, Douglas Santos, Fernanda Zanetinni, Jussara Clavé, Lauro Xavier, Paulo Hajime, Stefani Tainá e Taís Jeane.

Aos meus camaradas do Partido Pátria Livre, que seguraram as pontas quando pedi meu afastamento para poder estudar, mas que sempre me ajudaram dando incentivo e apoio para que pudesse chegar aqui, em especial aos amigos e camaradas, Adriano Augusto da Cruz, AlzimaraBacellar, Marcio Cabreira, Mario Bacellar e Rafael Sallet.

Aos colegas de curso que sempre tiveram nas horas boas e ruins, nas aulas, nos bares e estudando em conjunto. Aos colegas Cleber Souza, Kauê de Moraes Vestana, Lauro Xavier, Nicolas da Silveira, Paulo Hajime, Renan Daros e Tais Jeane, que me auxiliaram em etapas práticas deste projeto final, em especial a colega Ana Paula Ramos da Silva e ex-colega e hoje doutoranda Amanda Antunes, pelo incentivo extra nestes últimos meses TAIS.

A técnica administrativa desta universidade, TaneaJerekPissaia, que sempre com muita disposição, esteve solicita quando necessitei dos equipamentos de topografia do Labtopo e pelas conversas durante o período de execução deste projeto.

A doutoranda Alyne RaminelliSiguelGemin, que com grande dedicação, me orientou e ajudou na determinação das distâncias da DSD, foi de uma gentileza e generosidade ter me ensinado nesta etapa.

Ao meu orientador, Prof. Dr. Wander da Cruz, por toda a disponibilidade e orientação prestada, pelo apoio e compreensão que sempre manifestou, pela paciência e também pela amizade não somente neste período de conclusão do curso.

Ao meu Co-orientador, Prof. Dr. Luis Augusto Koenig Veiga, pelo seu incentivo, confiança e orientação desprendida não somente neste Trabalho de Conclusão de Curso, mas durante o curso todo.

A todos os professores e professoras do Curso de Engenharia Cartográfica e de Agrimensura, dedicados à arte de ensinar, pela contribuição para o nosso progresso acadêmico, em especial a Profa. Dra. Maria Cecília BonatoBrandalize, na qual tive a honra de ser seu monitor de topografia.

A todos que diretamente ou indiretamente ajudaram na realização e conclusão deste estudo.

Muito, mas muito obrigado!

"Se você conhece o inimigo e conhece a si mesmo, não precisa temer o resultado de cem batalhas. Se você se conhece, mas não conhece o inimigo, para cada vitória ganha sofrerá também uma derrota. Se você não conhece nem o inimigo nem a si mesmo, perderá todas as batalhas..."

Sun Tzu

RESUMO

O presente Trabalho de Conclusão de Curso refere-se à Criação de um Dispositivo de Simulação de Deslocamentos (DSD) para Testes de Posicionamento com Utilização de Estações Totais, para Curso de Engenharia Cartográfica de Agrimensura da Universidade Federal do Paraná. As metodologias adotadas para a criação da DSD foram: O levantamento topográfico, pelo método de irradiação tridimensional para a determinação das coordenadas tridimensionais da peça em campo; o ajustamento de observações utilizando o Método dos Mínimos Quadrados - MMQ, com aplicação do modelo combinado de ajustamento e a determinação das distâncias entres os pontos da DSD em laboratório, com a utilização do Interferômetro a Laser do Laboratório de Instrumentação Geodésica - LAIG. Os equipamentos topográficos utilizados para a realização deste trabalho, são equipamentos do Laboratório de Topografia – LABTOPO e do Laboratório de Geodésia Aplicada à Engenharia. Foram realizados durante o período de criação da DSD, ensaios em laboratório, testes e levantamentos em campo que serão apresentados em forma de gráficos e tabelas para melhor comparação dos resultados. No âmbito dos levantamentos realizados em campo e em laboratório, pode-se afirmar que se obteve êxito com a criação do Dispositivo de Simulação de Deslocamento, quando comparados os resultados.

LISTA DE ILUSTRAÇÕES

FIGURA 1 - IRRADIAÇÃO 2D 1	18
FIGURA 2 - IRRADIAÇÃO TRIDIMENSIONAL 1	18
FIGURA 3 - EMISSOR LASER (1) E CONTADOR/MOSTRADOR (2) 2	22
FIGURA 4 - INTERFERÔMETRO 2	23
FIGURA 5 - SISTEMA INTERFERÔMETRO – PILARES (4), TUBOS DE AÇO	
(5), FIXAÇÃO DOS TUBO (6) E SUPORTE DE APOIO(7) 2	24
FIGURA 6 - CARRINHO E SEUS COMPONENTES 2	24
FIGURA 7 - DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS 2	28
FIGURA 8 – DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS	30
FIGURA 9 - ILUSTRAÇÃO DA DSD	30
FIGURA 10 - DETERMINAÇÃO DAS DISTÂNCIAS DO DSD	31
FIGURA 11- DSD INSTALADO EM UM TRIPÉ 3	32
FIGURA 12- PRIMEIRO DIA DE TESTE DE CAMPO 3	33
FIGURA 13 - ILUSTRAÇÃO DO DSD COM MINI PRISMA	34
FIGURA 14- TERCEIRO DIA DE TESTE DE CAMPO 3	35
FIGURA 15- QUARTO DIA DE TESTE DE CAMPO 3	36
FIGURA 16 - DETERMINAÇÃO DO CÍRCULO COM O DSD NIVELADO 3	37
FIGURA 17- DETERMINAÇÃO DO CÍRCULO COM MINI PRISMA NIVELADO)
FIGURA 18-DETERMINAÇÃO DO CÍRCULO DO PONTO PVI E CENTRO DO	37)
DSD	39
FIGURA 19- AJUSTAMENTOS DAS POSIÇÕES DO PONTO PVI DO DSD –	
CÍRCULO	40
FIGURA 20- LEVANTAMENTO DE CAMPO E DESLOCAMENTO VERTICAL	
DA DSD	41
FIGURA 21- GRÁFICO COM A VARIAÇÃO DE COTA DE TODOS OS	
PONTOS OBSERVADOS PELA ESTAÇÃO TOTAL TC407	51
FIGURA 22 -GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PI	
OBSERVADO PELA ESTAÇÃO TOTAL TC407 5	51
FIGURA 23 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PII	
OBSERVADO PELA ESTAÇÃO TOTAL TC407 5	52
FIGURA 24 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIII	
OBSERVADO PELA ESTAÇÃO TOTAL TC407 5	52
FIGURA 25 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIV	
OBSERVADO PELA ESTAÇÃO TOTAL TC407 5	53
FIGURA 26 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PV	
OBSERVADO PELA ESTAÇÃO TOTAL TC407 5	53
FIGURA 27 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PVI	
~	

FIGURA 28 - GRÁFICO COM A VARIAÇÃO DE COTA TOTAL DOS P	ONTOS
OBSERVADOS PELA ESTAÇÃO TOTAL TCRA1205	54
FIGURA 30 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PII	
OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205	55
FIGURA 31 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIII	
OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205	56
FIGURA 32 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIV	
OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205	56
FIGURA 33 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PV	
OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205	57
FIGURA 34 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PVI	
OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205	57

LISTA DE TABELAS

TABELA 1 - VANTAGENS E DESVANTAGENS DOS TIPOS DE	
AJUSTAMENTO DE OBSERVAÇÃO	20
TABELA 2 - PRINCIPAIS CARACTERISTICAS E APLICAÇÕES DO NYLON	
6.0	25
TABELA 3 - PROPRIEDADES FÍSICAS	26
TABELA 4 - PROPRIEDADES TÉRMICAS	26
TABELA 5- DIMENSÕES DA DSD EM MILIMETROS	43
TABELA 6- DADOS ADICIONAIS	43
TABELA 7 - DIÂMETROS	43
TABELA 8 - PRIMEIRA SÉRIE DE OBSERVAÇÕES COM	
INTERFERÔMETRO	44
TABELA 9 - SEGUNDA SÉRIE DE OBSERVAÇÕES COM	
INTERFERÔMETRO	44
TABELA 10 - TERCEIRA SÉRIE DE OBSERVAÇÕES COM	
INTERFERÔMETRO	44
TABELA 11 - VALORES MÉDIOS OBSERVADOS	45
TABELA 12 - DESVIOS PADRÕES DE CADA DISTÂNCIA	45
TABELA 13 - PARÂMETROS AJUSTADOS EM RELAÇÃO AO PONTO PVI	
DO DSD	46
TABELA 14 - MÉDIAS DAS DISTÂNCIAS DETERMINADAS EM	
LABORATÓRIO	47
TABELA 15 - DISTÂNCIAS OBSERVADAS COM A ESTAÇÃO TOTAL TC40	7
	48
TABELA 16 - DISTÂNCIAS OBSERVADAS COM A ESTAÇÃO TOTAL	
TCRA1205	48
TABELA 17 - DIFERENÇAS DE DISTÂNCIA COM A TC407	48
TABELA 18 - DIFERENÇAS DE DISTÂNCIA EM RELAÇÃO COM A	
TCRA1205	49
TABELA 19 – VARIAÇÕES DE ALTURAS ENTRE ESTAÇÕES	50

LISTA DE SIGLAS

- DSD Dispositivo de Simulação de Deslocamentos
- LABTOPO Laboratório de Topografia
- LAIG I Laboratório de Instrumentação Geodésica
- MMQ Método do Mínimos Quadrados
- PD Pontaria Direta
- PI Pontaria Inversa
- UFPR Universidade Federal do Paraná
- TC407 Estação Total Leica, modelo TC407
- TCRA1205 Estação Total Leica, modelo TCRA1205
- TC2003 Estação Total Leica, modelo TC2003

LISTA DE ABREVEATURA

Dr. – Doutor

Dra. – Doutora

Prof. – Professor

Profa. – Professora

1 INTRODUÇÃO	16
1.1 OBJETIVO	17
1.2 OBJETIVOS ESPECÍFICOS	17
2 REFERÊNCIA TEÓRICO	17
2.1 IRRADIÇÃO TRIDIMENSIONAL	17
2.2 AJUSTAMENTO DE OBSERVAÇÃO MÉTODO COMBINADO	19
2.3 INTERFERÔMETRO A LASER	21
2.4 NAYLON PA 6.0	25
3 ÁREA DE ESTUDO	26
3.1 LOCALIZAÇÃO	26
4 MATERIAIS E MÉTODOS	27
4.1 MATERIAIS	27
4.1.1 EQUIPAMENTOS	27
4.2 MÉTODOS	28
4.2.1 FABRICAÇÃO DO DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMAN	TOS 29
4.2.2 DETERMINAÇÃO DE DISTÂNCIAS DO DISPOSITIVO DE SIMULAÇÃO	D DE
	31
	32
4.2.4 LEVANTAMENTO DE CAMPO – CIRCULO E CENTRO DO DSD	38
4.2.5 AJUSTAMENTO DAS OBSERVAÇÕES DO CIRCULO	39
4.2.6 LEVANTAMENTO DE CAMPO INFERINDO DESLOCAMENTOS VERTICAIS	40
5 RESULTADOS	42
5.1 RESULTADOS	43
5.1.1 RESULTADOS DAS OBSERVAÇÕES DE LABORATÓRIO – INTERFERÔMETRO LASER	43
5.1.2 RESULTADOS DOS PARÂMETROS AJUSTADOS	46
5.1.3 RESULTADOS DE CAMPO – COMPARAÇÕES DE DISTÂNCIAS ENTI PONTOS DO DSD	RE 47
5.1.4 RESULTADOS DE CAMPO – COMPARAÇÕES DAS VARIAÇÕES VERTICAIS	49
6 CONCLUSÃO	58
REFERÊNCIAS	60
APÊNDICE 1 – ALGORITMO PARA AJUSTAMENTO DO CIRCULO	61

Sumário

APÊNDICE 2 – COORDENADAS (X,Y) DOS PONTOS UTILIZADOS PARA O	
ARQUIVO DE ENTRADA DO AJUSTAMENTO	64

1 INTRODUÇÃO

O presente trabalho de conclusão de curso tem como eixo de atuação a área de levantamentos topográficos, bem como a elaboração de uma nova peça que possa ser utilizada como ferramenta de estudos e pré-análises de deslocamentos.

A partir de uma idéia inicial que era realizar um monitoramento de encostas, teve-se a projeção do desenvolvimento de uma peça, que por levantamentos topográficos ou geodésicos, possibilitasse analisar simulações de possíveis deslocamentos em estruturas diversas. Logo projetou-se um modelo uma peça de 12cm x 12cm largura x 2cm altura, onde é possível o posicionamento de prismas refletores em diferentes posições, sendo as distâncias relativas entre todas estas posições conhecidas com precisão sub-milimétrica, determinada em ensaios de laboratório usando-se um sistema de interferometria laser. A este dispositivo denominou-se Base de Simulação de Deslocamentos – DSD.

No decorrer do período de teste doDSD, foram realizados um total de cinco teste de campo, três levantamentos de campo para obtenção dos dados, no qual foram utilizados equipamentos topográficos de alta precisão e um ensaio de laboratório, no qual foi necessário a utilização do interferômetro a laser do laboratório – LAIG I, que determinou as distâncias relativas de cada um dos seis pontos da DSD, em relação ao seu centro com alta precisão, que poderão ser verificadas nas tabelas especificas no decorrer deste trabalho. Em relação a determinação das distâncias do centro do DSD a cada ponto, foram calibradas sempre a borda direita da cada um dos orifícios da peça.

Neste trabalho será usado levantamentos topográficos por irradiação tridimensional. É possível utilizar oDSD em estudos de pré-análise em monitoramentos de estruturas, descolamentos de encostas e demais estudos relativos à engenharia, determinado em laboratório ou em campo possíveis deslocamentos que estas estruturas estarão sujeitas, assim, simulando

situações reais que possam ocorrer em barragens, taludes ou até mesmo em construções de edificações.

1.1 OBJETIVO

Criar de umDispositivo de Simulação de Deslocamentos para o uso em levantamentos topográficos e geodésicos.

1.2 OBJETIVOS ESPECÍFICOS

- Projetar e fabricar um dispositivo de simulação de deslocamentos;
- Realizar simulações em laboratório e em campo, buscando detectar as movimentações simuladas;
- Utilizaro DSD, para obtenção de dados que possam permitir estudos e pré-análises, de possíveis deslocamentos em estruturas diversas, e que possam ser mensurados por topografia ou geodesia.

2 REFERÊNCIA TEÓRICO

2.1 IRRADIÇÃO TRIDIMENSIONAL

De acordo com Siguel et al. (2013) o método de irradiação 3D ou também é conhecido por polar e tem por objetivo a determinação das coordenadas tridimensionais de um ponto. Este método baseia-se na medida de direções horizontais, ângulos verticais e distâncias dos pontos de interesse em relação a uma direção conhecida, tomada como referência figura 1.

FIGURA 1 - IRRADIAÇÃO 2D

FONTE: ADAPTADO DE FROES (2013)

Segundo Miranda et al. (2009) a representação das coordenadas é realizada através de um sistema de coordenadas tridimensionais ortogonais, composto pelos eixos denominados de abscissa (X), ordenada (Y) e de cota (Z). Sendo as coordenadas cartesianas ortogonais X, Y e Z, obtidas a partir de: direções horizontais (α) medido no plano XY, ângulo zenital (Z) medido no plano vertical que contém o eixo Z e o ponto observado, e a distância inclinada (Di) medida do equipamento ao ponto considerado figura 2.

FIGURA 2 - IRRADIAÇÃO TRIDIMENSIONAL

FONTE: SIGUEL ET AL (2013)

As coordenadas cartesianas tridimensionais dos pontos de interesse são obtidas através das Equações 1, 2 e 3:

$$Xp = X0 + Di * senZ * senAz$$
(1)

$$Yp = Y0 + Di * senZ * cosAz$$
(2)

$$Zp = Z0 + (hi - hs + Di * cosZ)$$
(3)

Xp, *Yp*, *Zp* = *Coordenadas do ponto P no referencial local*;

X0, Y0, Z0 = Coordenadas da origem;

 $hi = altura \ do \ indtrumento$

hs = altura do sinal

Di = Distância Inclinada

Az

= Azimute (considerando que o eixo Y esta orientado para a direção norte);

 $Z = \hat{A}ngulo zenital.$

2.2 AJUSTAMENTO DE OBSERVAÇÃO MÉTODO COMBINADO

De acordo com Pinho (2010) o ajustamento de observações permite a solução de problemas, através de análises estatísticas e de qualidade. O ajustamento relaciona observações e parâmetros através de equações que conectem ambas as informações e através de álgebra, determina a melhor solução possível para este sistema.

Há três principais modelos de ajustamento (Gemael, 2015):

a) Paramétrico;

b) Correlatos ;

c) Combinado.

Cada um destes três métodos possui suas vantagens e desvantagens. A

TABELA 1, ilustra quais as principais características dos métodos.

TABELA 1 - VANTAGENS E DESVANTAGENS DOS TIPOS DE AJUSTAMENTO DE OBSERVAÇÃO

Método	Vantagens	Desvantagens
Paramétrico	Fácil de aplicar;	Há restrições na forma de utilização;
	Baixo custo computacional;	É mais trabalhoso do que o Método Correlatos.
	Resultado igual ao Combinado, quando aplicável.	
Operations		Não fornece os parâmetros finais de
Correlatos	Simples e facil de aplicar;	forma direta;
	Baixo custo computacional;	Ajusta somente as observações, sem considerar os parâmetros.
	Resultado iual ao Paramétrico	
	ou ao Combinado, quando aplicável.	
	Resolve qualquer problema de	
Combinado	ajustamento.	Alto custo computacional;
		Exige derivadas parcias para cada observação e parâmetro utilizado.

FONTE: PINHO (2010)

Dentre os diversos modos de realizar o ajustamento, o método combinado é o mais abrangente dentre os métodos de ajustamento que utilizam o método dos mínimos quadrados (MMQ), permitindo que parâmetros e observações estejam misturados e relacionados dentro das equações. A principal desvantagem deste método é o alto custo computacional, pois requer a criação de mais matrizes e um número maior de cálculos.

O modelo matemático do método combinado é apresentado abaixo (GEMAEL, 2015):

$$F(La, Xa) = 0$$

Linearizando;

$$V = La - Lb$$

$$A = \frac{\partial F}{\partial Xa}; B = \frac{\partial F}{\partial La};$$
$$W = F(Lb, X0);$$
$$F(Xa, La) = F(X0 + X, Lb + V);$$
$$F(X0 + X, Lb + V) \approx F(X0, Lb) + A = \frac{\partial F}{\partial Xa}(Xa - X0) + \frac{\partial F}{\partial La}(La - L0) = 0$$
$$AX + BV + W = 0$$

Um caso particular do combinado onde os parâmetros podem ser separados para um lado da equação e as observações para o outro lado. Quando isto é possível a equação apresentada acima é simplificada, permitindo a obtenção do resultado com um número menor de operações. O uso de injunções relativas permite que alguns parâmetros tenham seus resultados restringidos, aumentando ainda mais a eficiência do método (PINHO, 2010)

O método combinado utiliza o princípio dos mínimos quadrados para estimar um grupo de parâmetros, ligados a outro grupo de observações através das equações de condição. Para este método, não há muitas restrições, desde que seja dada a correta geometria e graus de liberdade para resolução do mesmo. Já o modelo paramétrico é na verdade uma simplificação do modelo combinado, quando a derivada parcial das equações de condição em relação às observações fornece um número inteiro (GEMAEL, 2015).

2.3 INTERFERÔMETRO A LASER

De acordo com Gomes (2006) o Laboratório de Instrumentação geodésica, da Universidade Federal do Paraná, possui um sistema para calibração de miras de ínvar, que utiliza um interferômetro a laser para efetuar as medidas dos intervalos entre os traços gravados na fita de ínvar com precisão do mícron. Esse sistema também pode ser utilizado na verificação e retificação de outros equipamentos topográficos e geodésicos.

O sistema é composto de:

Emissor do LASER Figura 3: fonte de luz monocromática, muito intensa, coerente e colimada, na qual a emissão de radiação se faz pelo estímulo de um campo externo.

Contador e mostrador figura 3: consiste basicamente de um processador matemático que transforma a diferença de fase da onda eletromagnética em distância.

FIGURA 3 - EMISSOR LASER (1) E CONTADOR/MOSTRADOR (2)

FONTE: GOMES (2006)

Interferômetro figura 4: divide o feixe LASER em dois, desviando um para o refletor fixo e o outro para um refletor móvel, recombinando-os após a reflexão.

FIGURA 4 - INTERFERÔMETRO

FONTE: GOMES (2006)

Pilares figura 5: alinhados, afastados entre si de 1 metro e engastados na laje do piso. Sobre os pilares estão fixados os suportes dos tubos de aço.

Tubos de aço figura 5: são dois com 5 metros de comprimento e diâmetro de 6 centímetros cada um. Funcionam como trilhos para o deslocamento do carrinho.

Sistema de fixação dos tubos de aço figura 5: é constituído por peças de alumínio que possuem três parafusos calantes que permitem posicionar os tubos de aço na posição horizontal.

Suporte de apoio para os equipamentos a serem calibrados figura 5: consiste em uma barra vazada de alumínio de seção retangular apoiada sobre os pilares. Com dimensões: 5m de comprimento; 7,5cm de largura e 4cm de altura. 3

FIGURA 5 - SISTEMA INTERFERÔMETRO – PILARES (4), TUBOS DE AÇO (5), FIXAÇÃO DOS TUBO (6) E SUPORTE DE APOIO(7)

FONTE: GOMES (2006)

Carrinho figura 6: apoiado em 3 rodas que se deslocam sobre os tubos de aço. No carrinho estão fixados: o refletor móvel do interferômetro, uma luneta para as pontarias e um nível de precisão para a verticalização da luneta.

FIGURA 6 - CARRINHO E SEUS COMPONENTES

FONTE: GOMES (2006)

O Nylon 6.0 é um termoplástico obtido a partir da poliamida 6, cujas excelentes propriedades mecânicas, elétricas e térmicas permitem as mais variadas aplicações, nos mais diversos ramos da indústria mecânica, elétrica e químicas. Sua substituição aos metais como materiais estruturais e/ou de construção, onde leva-se em consideração a leveza, o baixo coeficiente de atrito, a isolação elétrica, boas resistência à fadiga e a agentes químicos, o torna vantajoso. (INCOMPLAST, 2017)

Pode-se verificar a principais características do NYLON 6.0 e aplicações na tabela 2.

Principais Características –	
Nylon 6.0	Aplicações – Nylon 6.0
Baixo peso específico (1,14	Engrenagens, cremalheiras, roscas sem-
g/cm3);	fim,roldanas,roldanas,
Donto do fueño:	pollas, paratusos, buchas, chavetas, aneis de
	veuação, gaxeias,
Auto-extinguivel (com aditivo);	Estudio ella enteriore indetes constas
	Estrelas alimentadoras, roletes, sapatas,
Permite aditivação;	laminas reparadoras,
Baixo ruido – amortece	chapas de desgaste, placas deslizantes,
	bases de conte,
	•
Facilidade de usinagem;	Canecas e caçambas transportadoras.
l emperatura de trabalho – 40	
Boa resistência ao desgaste;	
Auto-lubrificante;	
Excelente isolante elétrico;	
Não acumula energia estática;	
Boa resistência química;	
Inerte a ataques biológicos.	
FONTE: INCOMPLAST (2017)	

TABELA 2 - PRINCIPAIS CARACTERISTICAS E APLICAÇÕES DO NYLON 6.0

Visto que o Nylon 6.0 é um material que pode ser utilizado em várias aplicações, será mostrado nas tabelas a seguir suas propriedades físicas, térmicas, suas respectivas unidade, normas e valores correspondentes.

TABELA 3 - PROPRIEDADES FÍSICAS

Propriedades Físicas	Unidades	Normas	Nylon6.0
Peso específico	g/cm3	DIN 53479,ASTM D792,ISO 1183	
Temperatura mínima e máxima em uso contínuo	°C	_	- 40 / +100
Absorção de umidade até o equilíbrio a 23 ºC c/UR 50%	%	DIN 53715	3
Absorção de água até a saturação FONTE: INCOMPLAST (2017)	%	DIN 53495, ASTM D570	9

FONTE: INCOMPLAST (2017)

TABELA 4 - PROPRIEDADES TÉRMICAS

Unidades	Normas	Nylon6.0
J∕⁰K.g	—	1,7
W∕⁰K.m	DIN 52612	0,23
10 6/01/		00
10-0/°N	—	90 -70
°C	_	150
٥C	DIN 53736	220
°C	DIN 53736	40
٥C	DIN 53461, ASTM D648,ISO R 75	84
_	UL94	НВ
	Unidades J/ºK.g W/ºK.m 10-6/ºK °C °C °C	Unidades Normas J/°K.g W/°K.m DIN 52612 10-6/°K °C °C DIN 53736 °C DIN 53736 °C DIN 53736 °C DIN 53736 °C UIN 53736 °C UIN 53736

FONTE: INCOMPLAST (2017)

3ÁREA DE ESTUDO

3.1LOCALIZAÇÃO

O estudo em questão localiza-senas dependências da Universidade Federal do Paraná – Campus Centro Politécnico. A parte inicial deste projeto final foi realizada no Laboratório Instrumentação Geodésica - LAIG I, que fica localizado no bloco IV (identificado como PI) deste centro politécnico.

Os testes e levantamentos de campo foram realizados com apoio dos Laboratórios de Topografia - LABTOPO e do Laboratório Geodésia Aplicada à Engenharia, pela utilização de seus equipamentos e sua estrutura, sendo que quase em sua totalidade de teste e levantamentos foram realizados em frente ao LABTOPO.

4 MATERIAIS E MÉTODOS

4.1 MATERIAIS

Para obter os resultados apresentados neste trabalho, teve-se a necessidade da utilização de um Interferômetro e estações totais para determinação das distâncias dos pontos da referida peça, equipamentos estes disponibilizados nos Laboratórios já mencionados. Também se fez necessário a utilização de softwares para compilação dos dados.

4.1.1 EQUIPAMENTOS

- Interferômetro a Laser, configurado para determinação de distâncias na ordem do mícron;
- Estação Total Leica TC407
 Precisão angular de 7"
 Precisão Linear de 2mm+2ppm;
- Estação Total TCRA 1205
 Precisão angular de 5"
 Precisão Linear de 2mm+2ppm;
- Estação Total TC2003
 Precisão angular de 0,5"
 Precisão Linear de 1mm+1ppm;
- Mini Prisma Leica;

- Prisma 360° leica;
- Prisma Leica;
- Tripé;
- Bipé;
- Base calantes;
- Trena métrica;
- Paquímetros;
- Parafusos e porcas;
- Base de Simulação para Deslocamentos;
- Chaves de boca.

4.2 MÉTODOS

Na fase inicial de elaboração do presente trabalho, foi necessário realizar testes de campo para adequação da metodologia e verificação da qualidade dos dados,para obter o êxito na criação doDispositivo de Simulação de Deslocamentos.

A Figura 7, exemplifica a posição de todos os pontos mensurados nos ensaios de laboratório e teste de campo, onde PI, PII PIII, PIV, PV e PVI são os nomes atribuídos a cada ponto do DSD. Cabe salientar que o ponto PV e PVI foram intencionalmente colocados, um próximo ao outro, no intuito de se verificar os possíveis deslocamentos relativos entre eles.

FIGURA 7 - DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS

FONTE: AUTOR (2017)

4.2.1 FABRICAÇÃO DODISPOSITIVO DE SIMULAÇÃO DE DESLOCAMANTOS

O primeiro passo foi fazer um protótipo doDSD. Inicialmente esse protótipo seria de madeira com dimensões 12cm x 12cm x 5cm. Porém, em função da a instabilidade dimensional da peça em madeira, buscou-se outro material para a confecção do dispositivo.

Em um segundo momento, procurou-se fazer o protótipo de outros materiais dentro da universidade como, por exemplo, ferro fundido e aço. Porém tornou-se inviável devido ao alto custo para aquisição necessária de brocas especificas para a furadeira de bancada do laboratório de mecânica, que iria auxiliar nesse processo.

Tomou-se então a decisão de fazer a peça em uma tornearia privada. Assim, foi tomada a decisão de produzir o Dispisitivos de Simulação de Deslocamentos em uma barra de Nylon PA6.0, por ser um material leve e de fácil manuseio, como pode-se analisar suas características e aplicações TABELA 1, propriedades físicas TABELA 2 e propriedades térmicas na TABELA 3 nas tabelas 1.

Notou-se que a dilatação térmica de uma barra de Nylon PA6.0, não produziria influência nos resultados que seriam observados em campo, visto que a temperatura de trabalho deste material varia entre -40 °C e +100 °C, portanto a base foi produzida em Nylon PA6.0, logo a DSD confeccionada possui seis pontos de deslocamentos verticais e horizontais e um ponto central para calagem da mesma, conforme imagem abaixo.

As dimensões doDSD são de aproximadamente de 12 cm x 12 cm de largura e 2 cm de espessura em material Nylon PA6.0 conforme ilustrado na Figura 9 e fabricada com um furadeira de bancada, de onde provém sua verticalidade. Foi determinado que oDSD teria seis pontos de simulações de deslocamentos tridimensional, tendo cada um dos pontos de deslocamentos um diâmetro médio de 4,8 mm e o ponto central denominado de ponto de calagem com 13,1 mm. Estes diâmetros correspondem aos tamanhos de parafusos que serão fixados noDSD, nos pontos de deslocamentos, serão

utilizados parafusos de $\frac{1}{4}$ de polegadas, onde neles serão instalados os mini prismas. Já o diâmetro do ponto central foi determinado pelo tamanho da rosca do parafuso da base calante, que é de $\frac{5}{8}$ de polegadas, abaixo mostra-se a posição dos pontos doDSD, bem como o ponto de calagem ou ponto central, ver Figura 8.

FIGURA 8-DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS

FONTE: AUTOR (2017)

Na figura 9, é possível notar que existem dois pontos muito próximos, estes foram intencionalmente posicionados, afim de verificar o pequeno deslocamento existente entre eles durante o teste de campo e nos levantamentos realizados e ensaios de laboratório.

FIGURA 9 - ILUSTRAÇÃO DA DSD

FONTE: PROFESSOR LUIS VEIGA (2017)

4.2.2DETERMINAÇÃO DE DISTÂNCIAS DO DISPOSITIVO DE SIMULAÇÃO DE DESLOCAMENTOS

De posse do protótipo doDSD, foi realizado no Laboratório Instrumentação Geodésica – LAIG I, a determinação das distâncias entre os pontos da DSD, através do interferômetro a laser, em ambiente controlado, como será demonstrado em tabelas especificas nos resultados. Neste processo foram determinadas as distâncias de referência entre as marcações do dispositivo.

A determinação doDSD foi realizada observando três séries das distâncias entre todos os pontos em relação ao centro da peça.

A determinação das distâncias entre os pontos foi necessária para que pudéssemos saber com precisão sub-milimétrica à real distância entre os pontos, bem como os diâmetros de cada um deles, tal como do ponto central, conforme apresenta a figura 10.

FIGURA 10 - DETERMINAÇÃO DAS DISTÂNCIAS DODSD

FONTE: AUTOR (2017)

4.2.3 TESTES DE CAMPO

Foram realizados cinco testes de campo, todos eles utilizando o método de irradiação tridimensional de coordenadas. O primeiro teste foi realizado, teve o intuito de verificar se a estação total TC407 conseguiria detectar os deslocamentos verticais impostos noDSD.

Os deslocamentos verticais se darão através da rosca de fixação do mini prisma no dispositivo, a qual foi movimentada manualmente em cada ponto, sendo sempre girandoo mini prisma em torno do seu eixo instalado no ponto em observação.

Assim, manualmente inseríamos possíveis deslocamentos verticais na DSD, neste teste foram observados somente os pontos PI, PIII e PV, com uma distância aproximada de 15 metros da base instalada à estação total TC407, em frente do Laboratório de Topografia - LABTOPO.

A figura 11, mostra como é instalada oDSD. Pode-se notar que ela é fixada em um tripé através de uma base calante, sendo que o correto é utilizar uma base calante que seja possível o giro da base em torno de seu eixo central.

FIGURA 111- DSD INSTALADO EM UM TRIPÉ

FONTE: PROFESSOR LUIS VEIGA (2017)

Todas as observações realizadas, tiveram três séries de observações no método de pares conjugados, em cada posição do mini prisma. Através deste foi possível verificar que oDSD tinha sido perfurada com um micro deslocamento vertical, o que não possibilitaria o nivelamento do mini prisma e o nivelamento doDSD em conjunto, neste sentido é que fizemos observações com a base nivelada e também com o mini prima nivelado, sempre em separado uma da outra.

A Figura 12 mostra a posição da estação total TC407 e a DSD instalada em frente do LABTOPO, no primeiro dia de testes.

FIGURA 122- PRIMEIRO DIA DE TESTE DE CAMPO

FONTE: AUTOR (2017)

A figura 13, ilustra oDSD com o mini prima colocado na posição do ponto

FIGURA 13- ILUSTRAÇÃO DODSD COM MINI PRISMA

PI.

FONTE: PROFESSOR LUIS VEIGA (2017)

No segundo dia de teste, também utilizando a estação total TC407, a distância entre a estação e o dispositivo foi aumentada para 40 metros aproximadamente, afim de verificar se a distância iria influenciar nos deslocamentos verticais.

Um terceiro teste foi sugerido para que através de cinco pontos observados noDSD, pudéssemos gerar um círculo, para que fosse feito um ajustamento de um ponto em relação ao centro da peça, assim podendo comparar as distancias aferidas em laboratório e as observadas em campo. Para o ajustamento das observações será utilizado o método combinado F(La,Xa)=0.

Os testes do terceiro dia mostraram que deveriam resolver um problema de como fazer a partir dos pontos observados gerar um círculo, pois quando plotados os pontos no software AutoCadMap 2016, se visualizaria o círculo, porém o teste realizado não obteve um círculo. Nas observações do terceiro dia de teste não houveram variações de altura do mini prima, pois o objetivo central deste teste era a partir de 5 pontos observados gerar um círculo. Foram observados os pontos PI, PII, PIII, PIV e PV, como podemos conferir na Figura 14.

Neste mesmo teste foi observado o ponto PVI em sete posições distintas, na esperança que se alterássemos a posição de um único ponto geraríamos um círculo, porém o resultado ainda se aproximava de uma elipse. Isso ocorreu devido fato de não ter sido utilizado uma base calante adequada para o teste, na qual possibilitaria o giro entorno do eixo central da peça.

FIGURA 14- TERCEIRO DIA DE TESTE DE CAMPO

FONTE: AUTOR (2017)

O quarto dia de teste foi utilizado três estações totais a TC407, TCRA1205 robotizada e a TC2003 geodésica, todas com o intiuto de gerar os pontos necessarios para que obtivesse um circulo, porém não foi possivel chegar ao objetivo.

Com a utilização das três estações, verificou-se que se fosse utilizado o mini prisma para determinação do círculo, mesmo que agora, estivesse

utilizando uma base calante que gira em torno de seu eixo, não foi possível a obtenção do círculo. Pois quando se gira oDSD em torno do seu próprio eixo, o mini prisma não ficava com sua fase voltada para as estações totais, assim ao rotacionar a base, também era necessário rotacionar o mini prisma, em sentido contrário, para tornar visível o refletor do mini prisma às estações. Foi possível verificar que a não obtenção da verticalidade do mini prisma, se dá ao fato de rotacionaro DSD e o mini prisma ao mesmo tempo.

Este teste também mostrou que só existia a necessidade de utilizar duas das três estações utilizadas no teste. Neste sentido por questões operacionais, foram utilizadas as estações TC407 e TCRA1205 para o restante dos testes e possíveis levantamentos finais deste trabalho. A Figura 15 ilustra as três estações utilizadas no quarto dia de teste em campo.

FIGURA 15- QUARTO DIA DE TESTE DE CAMPO

FONTE: AUTOR (2017)

A figura 16 mostra a projeção do círculo de um determinado ponto, quando utilizado o mini prisma na determinação do mesmo, com a base nivelada. A figura 17 mostra quando o mini prisma está nivelado.

FIGURA 16 - DETERMINAÇÃO DO CÍRCULO COM O DSD NIVELADO

FONTE: PROFESSOR LUIS VEIGA (2017)

FIGURA 17- DETERMINAÇÃO DO CÍRCULO COM MINI PRISMA NIVELADO

FONTE: PROFESSOR LUIS VEIGA (2017)

O quinto e último dia de teste foi verificado que somente com a estação total TCRA1205 e com o prisma 360° da Leica conseguiria obter um círculo através das observações, assim determinou-se o ponto PVI como sendo ponto a ser observado.

O DSD foi projetado para ser utilizado apenas com parafusos que encaixe em mini prismas. Para que a base possa ser utilizada também com o prisma 360°, foi necessário utilizar a ponteira do mini prisma como pino de encaixe para o prisma 360°.

Tendo noção que o prisma 360° não estaria completamente fixado ao parafuso da base, foram realizadas as observações, assim chegando ao círculo como resultado desejado, logo foram encerrados o período de testes.

4.2.4 LEVANTAMENTO DE CAMPO – CIRCULO E CENTRO DODSD

O levantamento das observações do círculo e do centro doDSD, foram realizados no campo em frente ao prédio da administração do centro politécnico, para tal levantamento foram utilizados seguintes equipamentos:

- 01 Estação Total TCRA1205;
- 01 Prisma 360° Leica;
- 02 Tripés;
- 01 Bipé;
- 01 Prisma;
- 01 Paquímetro;
- 01 DSD.

O levantamento das observações do círculos e centro, se deram de forma automatizadas, utilizando o modo de levantamento automático através da técnica de acompanhamento do prisma pela estação (track na língua inglesa) da estação TCRA1205, no qual a estação faz a busca automatizada do alvo e faz leituras de acordo com o tempo programado nela, para este trabalho

foi programada leituras de observações a cada 2 segundos e uma distância aproximada de 15 metros.

Para a determinação do círculo, foram observadas 279 posições distintas do ponto PVI doDSD, único ponto a ser ajustado o seu círculo e mais 220 observações do centro da peça, todas com a mesma altura de 130,5mm do refletor 360°, em relação a base da peça ao centro do prisma.

FIGURA 18-DETERMINAÇÃO DO CÍRCULO DO PONTO PVI E CENTRO DODSD

FONTE: AUTOR (2017)

4.2.5 AJUSTAMENTO DAS OBSERVAÇÕES DO CÍRCULO

O objetivo da realização do ajustamento das observações doDSD é comparar os valores aferidos em laboratório, com os valores observados em campo, para isto foi utilizado o método combinado. Foi compilado um algoritmo no software Matlab R2015b que permite calcular os parâmetros ajustados, coordenadas Xc e Yc do centro da peça, o raio do círculo em relação ao centro da peça, a variância a posteriori e o número de iterações para a convergência do ajustamento.

O arquivo de entrada no algoritmo é um arquivo no formato .txt denominado pontos2.txt, contendo os valores das coordenadas X e Y observadas em campo. O algoritmo retorna um outro arquivo em formato .txt, denominado parâmetros ajustados2.txt com os valores dos parâmetros ajustados.

É possível verificar na figura 19 as observações realizadas em campo para o ajustamento do ponto PVI.

FIGURA 19- AJUSTAMENTOS DAS POSIÇÕES DO PONTO PVI DODSD – CÍRCULO

FONTE: AUTOR (2017)

4.2.6 LEVANTAMENTO DE CAMPO INFERINDO DESLOCAMENTOS VERTICAIS

Os levantamentos nos quais foram inferidos os deslocamentos verticais, realizaram-se em dois dias, um dia utilizando as duas estações totais a TC407 e a TCRA1205 e um outro dia utilizando somente a estação total TCRA1205.

Para a realização desta etapa do projeto final, os seguintes equipamentos foram empregados:

• 01 Estação Total TC407;

- 01 Estação Total TCRA1205;
- 01 Mini Prisma Leica;
- 03 Tripés;
- 01 Bipé;
- 01 Prisma;
- 01 Paquímetro;
- 01 DSD.

As observações foram realizadas em todos os pontos do DSD, na seguinte ordem:

- A altura medida da base da peça até o centro do mini prisma, consideram-se zero voltas realizadas entorno do parafuso, denominando assim essa posição como VOLTA 0.
- A altura posterior da base em relação ao centro do mini prisma foi denominada como VOLTA 1, inferindo a ela uma volta entorno do eixo do parafuso. É possível verificar tal procedimento na figura 20.
- Em subsequência a altura da base em relação ao centro do mini prisma denominada como VOLTA 2, inferindo a ela duas voltas entorno do eixo do parafuso.
- Por fim a altura da base em relação ao centro do mini prisma denominada como VOLTA 3, inferindo a ela três voltas entorno do eixo do parafuso.

FIGURA 20- LEVANTAMENTO DE CAMPO E DESLOCAMENTO VERTICAL DA DSD

FONTE: AUTOR (2017)

A posição das diferenças alturas observadas em cada volta dada em torno do eixo do mini prisma em cada ponto da DSD, foram obtidos com a seguinte formula:

$$Dv = di * \cos Z,$$

Onde:

Di é a distância inclinada e Z ângulo zenital observado em cada observação, foi possível constatar as variações chegam à ordem milímetro. Pode-se desta forma verificar que houveram deslocamentos entres as voltas inferidas e detectadas pelas estações.

Os cálculos das diferenças de alturas observadas foram feitos por diferença de simples posição, por exemplo quanto variou o mini prisma quando considerado a posição em P1 V0 e P1 V1, fez-se o somatório das observações no ponto P1 na volta V0 tirou sua média, da mesma forma com o ponto P1 na volta V1, e se subtraem os valores das médias, logo obtém-se a variação de altura inferida noDSD e detectada pela estação.

5 RESULTADOS

Os resultados foram obtidos a partir de observações realizadas em laboratório, em ambiente controlado, para determinação das distâncias da peça e também em campo para obtenção de dados.Além disso realizou-seo ajustamento das observações, utilizando o método combinado.

Nos gráficos e tabelas a seguir mostram-se as variações de alturas e distâncias entre os pontos do DSD, sendo um total de sete gráficos gerados por estação, na qual demostra-se, um gráfico geral com a variação total das alturas e outros seis gráficos com a variação pontual. Também é apresentada uma análise dos dados observados em campo em relação aos dados observados em laboratório, no que se refere as distâncias entre os pontos, bem como uma tabela com os parâmetros ajustados em ralação ao ponto PVI, por ajustamento de observações.

5.1 RESULTADOS

5.1.1 RESULTADOS DAS OBSERVAÇÕES DE LABORATÓRIO – INTERFERÔMETRO LASER

Os resultados a seguir estão tabelados para melhor entendimento da relação entre os pontos doDSD observados em campo e os aferidos em laboratórios.

TABELA 5- DIMENSÕES DA DSD EM MILIMETROS

DIMESOES DA DSD mm					
Eixo 1 - PI-PIII	119,840				
Eixo 2 - PI-PV	112,960				
Eixo 3 - PV-PIV	119,730				
Eixo 4 - PIV-PIII	123,430				
ALTURA	20,700				
FONTE: AUTOR(2	017)				

TABELA 6- DADOS ADICIONAIS

DADOS ADICIONAIS							
Temperatura ° C Pressão Umidade (%) Data da Medição							
22	692	51	21/03/2017				
FONTE: AUTOR (20)17)						

TABELA 7 - DIÂMETROS

DIAMETROS da DSD

	Série 1mm	Série 2 mm	Série 3 mm	MÉDIA mm	DESVIO mm	RAIO mm
DP	4,772	4,765	4,765	4,767	0,004	2,384
DC	13,152	13,155	13,149	13,152	0,003	6,576

DP = Diâmetro dos parafusos

DC = Diâmetro da rosca de fixação

FONTE: AUTOR (2017)

As tabelas 8,9 e 10 mostram as séries observadas em laboratório entre as distâncias doDSD, com utilização do interferômetro a laser.

PRIMEIRA SÉRIE mm E IDENTIFICAÇÃO DOS PONTOS DA DSD							
Distâncias	I	II		IV	V	VI	
I	0,000						
II	40,231	0,000					
III	79,884	39,653	0,000				
IV	102,445	80,505	70,440	0,000			
V	87,793	97,455	120,334	68,927	0,000		
VI	81,670	93,371	117,699	75,327	6,567	0,000	
С	63,826	54,953	72,054	48,974	55,212	50,540	
I = Ponto PI							
II = Ponto PII							
III = Ponto PI	II						
IV = Ponto P	IV						
V = Ponto P\	/						
VI = Ponto P	VI						
C = Ponto Ce	entral ou Po	nto do Cala	ante				
FONTE: AUT	OR(2017)						

TABELA 8 - PRIMEIRA SÉRIE DE OBSERVAÇÕES COM INTERFERÔMETRO

TABELA 9 - SEGUNDA SÉRIE DE OBSERVAÇÕES COM INTERFERÔMETRO

SEGUNDA SÉRIE mm									
Distâncias	I	II		IV	V	VI			
I	0,000								
П	40,222	0,000							
III	79,873	39,651	0,000						
IV	102,443	80,507	70,433	0,000					
V	87,791	97,447	120,330	68,940	0,000				
VI	81,661	93,369	117,696	75,329	6,559	0,000			
С	63,826	54,954	72,054	48,975	55,217	50,538			
	rop(2017)								

FONTE: AUTOR (2017)

TABELA 10 - TERCEIRA SÉRIE DE OBSERVAÇÕES COM INTERFERÔMETRO

TERCEIRA SÉRIE mm									
Distâncias				IV	V	VI			
I	0,000								
II	40,227	0,000							
III	79,879	39,652	0,000						
IV	102,444	80,505	70,443	0,000					
V	87,790	97,449	120,333	68,940	0,000				
VI	81,677	93,370	117,698	75,314	6,567	0,000			
С	63,825	54,952	72,055	48,975	55,214	50,537			

FONTE: AUTOR (2017)

A tabela 11, é utilizada como parâmetro para as análises que serão feitas entre as relações dos valores observados de campo, com as médias das três séries de observações realizada em laboratório.

MÉDIAS OBSERVADAS mm									
Distâncias		II	III	IV	V	VI			
Ι	0,000								
II	40,227	0,000							
III	79,879	39,652	0,000						
IV	102,444	80,506	70,439	0,000					
V	87,791	97,450	120,332	68,936	0,000				
VI	81,669	93,370	117,698	75,323	6,564	0,000			
С	63,826	54,953	72,054	48,975	55,214	50,538			
FONTE: AUT	OR (2017)								

TABELA 11 - VALORES MÉDIOS OBSERVADOS

A tabela 12, mostra os desvios padrão das séries realizadas para a determinação das distâncias de cada ponto.

DEVSIO PADRÃO mm								
Distâncias	I	II	III	IV	V	VI		
1	0,000							
II	0,005	0,000						
III	0,006	0,001	0,000					
IV	0,001	0,001	0,005	0,000				
V	0,002	0,004	0,002	0,008	0,000			
VI	0,008	0,001	0,002	0,008	0,005	0,000		
С	0,001	0,001	0,001	0,001	0,003	0,002		
FONTE: AUTO	DR (2017)							

TABELA 12 - DESVIOS PADRÕES DE CADA DISTÂNCIA

Como pode ser observar na tabela 12, todos os valores estão com a precisão de miléssimo do milímetro, sendo sua variação máxima de 7 milésimos de milimetro.

5.1.2 RESULTADOS DOS PARÂMETROS AJUSTADOS

Os resultados a seguir como pode-se verificar na Tabela 13 são dos parâmetros ajustados, com os valores observados em laboratório, os valores serão comparados em apenas um dos pontos doDSD, ponto PVI, o qual foi realizado o levantamento do círculo em campos resultados comparativos estão em milímetros, porém as coordenadas Xc e Yc em metros, onde Xc e Yc são as coordenadas ajustadas do centro da peça.

PARÂMETROS AJUSTADOS				
	Interferômetro	279 pontos	11 pontos	Diferença
Xc (m)	-	2,978	2,979	-0,0002
Yc (m)	-	-13,968	-13,967	-0,0004
Raio Ajustado (mm)	-	50,534	50,383	0,1510
Raio Interferômetro (mm)	50,538	-	-	-
Variância a Posteriori (mm)	-	0,001	0,000	0,001
Iterações	-	2	3	1
FONTE, ALITOD (0047)				

TABELA 13 - PARÂMETROS AJUSTADOS EM RELAÇÃO AO PONTO PVI DODSD

FONTE: AUTOR (2017)

Os valores contidos na tabela 13, como pode ser observado, possuem dois valores de ajustamento, um com a realização do ajustamento do círculo contendo todos os 279 pontos e outro contendo apenas 11 pontos do mesmo levantamento e o valor aferido pelo interferômetro, estas observações em questão são referentes as mensurações das distâncias entre o ponto PVI e o ponto central da DSD.

Pode-se afirmar que ambos os ajustamentos, geraram resultados satisfatórios, pois quando se leva em consideração os valores ajustados com os 279 pontos, obtém-se uma precisão no milésimo do milímetro, entre o valor observado em ambiente controlado em relação ao levantado em campo. Necessitando assim de 2 iterações para os valores convergirem.

Quando se analisa apenas 11 pontos da base de simulação de deslocamentos, as precisões dos valores ajustados ficam na casa do décimo do milímetro, necessitando assim de 3 iterações para convergirem os valores.

Assim afirma-se que a metodologia adotada para a verificação da funcionalidade da peça em questão foi acertada, pois a comparação dos valores ajustados com os valores observados em laboratório, suas diferenças são sub-milimétricas.

5.1.3RESULTADOS DE CAMPO – COMPARAÇÕES DE DISTÂNCIAS ENTRE PONTOS DODSD

Para poder se comparar as distâncias horizontais entre os pontos doDSD observados em campo com os obtidos em laboratório foi necessário determinar as coordenadas de cada ponto observado pelo método de irradiação tridimensional. De posse das coordenadas dos pontos observados, foi calculada as médias das coordenadas e em seguida determinada as distâncias relativas de cada ponto.

Os resultados a seguir apresentados nas tabelas 14, 15 e 16 mostram os dados observados em campo e as médias das observações das distâncias aferidas em laboratório.

MÉDIAS DAS DISTÂNCIAS DETERMINADAS EM LABORATÓRIOmm								
Distâncias		II	III	IV	V	VI		
1	0,000							
П	40,227	0,000						
III	79,879	39,652	0,000					
IV	102,444	80,506	70,439	0,000				
V	87,791	97,450	120,332	68,936	0,000			
VI	81,669	93,370	117,698	75,323	6,564	0,000		
С	63,826	54,953	72,054	48,975	55,214	50,538		

TABELA 14 - MÉDIAS DAS DISTÂNCIAS DETERMINADAS EM LABORATÓRIO

FONTE: AUTOR (2017).

TC 407											
Distâncias	I	II	111	IV	V	VI					
I	0,0000										
П	38,4482	0,0000									
III	71,3816	32,9336	0,0000								
IV	96,2038	78,4207	76,2356	0,0000							
V	86,9775	101,2998	122,0229	76,1126	0,0000						
VI	82,5342	97,4078	118,7461	75,3926	4,4799	0,0000					

TABELA 15 - DISTÂNCIAS OBSERVADAS COM A ESTAÇÃO TOTAL TC407

FONTE: AUTOR (2017).

TABELA 16 - DISTÂNCIAS OBSERVADAS COM A ESTAÇÃO TOTAL TCRA1205

TCRA 1205										
Distâncias	I	II		IV	V	VI				
I	0,0000									
П	41,3843	0,0000								
III	80,5752	39,1929	0,0000							
IV	102,7309	79,6281	74,7548	0,0000						
V	88,7804	98,6241	121,3550	74,7286	0,0000					
VI	80,3690	92,1582	116,8910	75,7632	8,7932	0,0000				
FONTE	TOR (2017)									

FONTE: AUTOR (2017).

Nas tabelas 17 e 18 pode- se verificar as diferenças das distâncias observadas com as estações totais, em relação aos valores médios determinadosno interferômetro a laser, para todos os pontos doDSD.

TABELA 17 - DIFERENÇAS DE DISTÂNCIA COM A TC407

DIFERENÇAS DE DISTÂNCIA EM RELAÇÃO COM A TC407						
Distâncias		II	III	IV	V	VI
I	0,000					
II	1,779	0,000				
III	8,497	6,719	0,000			
IV	6,241	2,086	5,796	0,000		
V	0,794	3,849	1,691	7,177	0,000	
VI	0,865	4,038	1,048	0,070	2,086	0,000
FONTE: AUTO	DR (2017).					

DIFERENÇAS DE DISTANCIA EM RELAÇÃO COM A TCRA1205						
Distâncias		II	III	IV	V	VI
I	0,000					
П	1,158	0,000				
III	0,697	0,459	0,000			
IV	0,287	0,878	4,316	0,000		
V	0,989	1,174	1,023	5,793	0,000	
VI	1,300	1,212	0,807	0,440	2,229	0,000
	2(2017)					

TABELA 18 - DIFERENÇAS DE DISTÂNCIA EM RELAÇÃO COM A TCRA1205

FONTE: AUTOR (2017).

Analisou-se que os objetivos de detectar variações das distâncias horizontais entre cada ponto doDSD, entre os levantados em campo, com os calibrados em laboratório, foram realizados com sucesso, pois a variação máxima não atinge um centímetro entre os deslocamentos de cada ponto.

5.1.4 RESULTADOS DE CAMPO – COMPARAÇÕES DAS VARIAÇÕES VERTICAIS

Os resultados que são apresentados na tabela 19 mostram as diferenças de alturas observadas entre cada ponto do DSD, determinadas a partirdas estações totais TC407 e TCRA1205.

Onde P01 corresponde ao mini prisma observado no ponto PI, P02 corresponde ao mini prisma observado no ponto PII, assim, sucessivamente. E V0 consideram-se zero voltas realizadas entorno do parafuso, V1 inferindo a ela uma volta entorno do eixo do parafuso, assim, sucessivamente para V2 e V3.

	TCRA1205	TC407	
	ALTURAS (mm)	ALTURAS (mm)	DIFERENÇA (mm)
P01 V0	0,000	0,000	0,000
P01 V1	1,342	0,971	0,371
P01 V2	3,709	1,976	1,732
P01 V3	4,662	3,363	1,299
P02 V0	0,000	0,000	0,000
P02 V1	0,883	1,248	0,365
P02 V2	1,910	2,461	0,551
P02 V3	3,347	3,553	0,207
P03 V0	0,000	0,000	0,000
P03 V1	1,233	1,834	0,601
P03 V2	2,364	2,869	0,505
P03 V3	3,585	4,111	0,525
P04 V0	0,000	0,000	0,000
P04 V1	1,254	1,591	0,337
P04 V2	2,805	2,640	0,165
P04 V3	3,976	4,002	0,025
P05 V0	0,000	0,000	0,000
P05 V1	1,519	1,128	0,391
P05 V2	2,399	1,988	0,411
P05 V3	3,915	3,023	0,892
P06 V0	0,000	0,000	0,000
P06 V1	1,657	1,218	0,440
P06 V2	3,469	2,699	0,769
P06 V3	3,125	3,408	0,283

TABELA 19 – VARIAÇÕES DE ALTURAS ENTRE ESTAÇÕES

FONTE: AUTOR (2017)

A seguir serão apresentados os gráficos das variações de altura de todos os pontos levantados com as estações TC407 e TCRA1205, bem como os gráficos de cada ponto em separado.

FIGURA 21- GRÁFICO COM A VARIAÇÃO DE COTA DE TODOS OS PONTOS OBSERVADOS PELA ESTAÇÃO TOTAL TC407

FONTE: AUTOR (2017)

O comportamento dos gráficos correspondente as figuras 21 e 28, se dão ao fato que neles estão contidos todos os pontos observados e cada uma das voltas das em cada ponto, ou seja, é um gráfico de variação de cota e mostra o comportamento desta variação em cada ponto. Os demais gráficos mostram as variações ponto a ponto.

FONTE: AUTOR (2017)

FONTE: AUTOR (2017)

FIGURA 24 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIII OBSERVADO PELA ESTAÇÃO TOTAL TC407

FONTE: AUTOR (2017)

FIGURA 25 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIV OBSERVADO PELA ESTAÇÃO TOTAL TC407

FONTE: AUTOR (2017)

FIGURA 26 -GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PV OBSERVADO PELA ESTAÇÃO TOTAL TC407

FIGURA 27 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PVI OBSERVADO PELA ESTAÇÃO TOTAL TC407

FONTE: AUTOR (2017)

FIGURA 28 - GRÁFICO COM A VARIAÇÃO DE COTA TOTAL DOS PONTOS OBSERVADOS PELA ESTAÇÃO TOTAL TCRA1205

FONTE: AUTOR (2017)

FIGURA 29 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PI OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

FONTE: AUTOR (2017)

FIGURA 29 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PII OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

FIGURA 30 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIII OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

FONTE: AUTOR (2017)

FIGURA 31 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PIV OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

FONTE: AUTOR (2017)

FIGURA 32 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PV OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

FONTE: AUTOR (2017)

FIGURA 33 - GRÁFICO DA VARIAÇÃO DE COTA DO PONTO PVI OBSERVADO PELA ESTAÇÃO TOTAL TCRA1205

6 CONCLUSÃO

Analisando dados observados, notou-se que em uma variação de distância de 40 metros e 15 metros, existem um pequeno deslocamento vertical de cerca de 1 mm em média, mas está variação não seria interferiu nos resultados dos testes de campo, assim, decidiu-se que usar-se-ia a menor distâncias nos levantamentos das observações.

Como podemos notar nas tabelas 17 e 18, as discrepâncias de algumas distâncias são consideráveis, como por exemplo a discrepâncias entre o ponto PI e PIII da tabela 17, na qual a diferença se aproxima de 8.5 mm, quando comparado os valores calibrado em laboratório e os dados observados com a estação total TC407. Isto pode ter ocorrido por o mini prisma não está totalmente na vertical, devido as características de construção do DSD, conforme explicado na metodologia do trabalho, ou por erro grosseiro de visada, ou por estes pontos não estarem totalmente alinhados. Porém também se nota que maioria das discrepâncias estão na casa sub-miliétrica quando analisado os dados da estação TCRA1205 comparado com os valores calibrados pelo interferômetro.

Conforme os resultados da tabela 19, nota-se que as diferenças detectadas entre as estações totais são sub-milimétricas, salvo os resultados do ponto P01 nas voltas V2 e V3, que as diferenças superaram o valor do milimetro.

Através dos experimentos realizados, mostra-se que o propósito da criação da base de simulações de deslocamento, obteve êxito nos levantamentos de campo, pois quando comparados seus resultados com os dados calibrados em laboratório, conclui-se que foram detectadas pequenas variações de altura nos deslocamentos verticais e também detectadas variações nos deslocamentos horizontais, conforme apresentado em cada um dos resultados.

No âmbito dos levantamentos topográficos e geodésicos, executando o método de irradiação tridimensional com a utilização da estação total

TCRA1205, que os resultados obtidos são de melhores quando comparado com os resultados estação TC407. Isto já era esperado, visto estação TCRA1205 tem precisões lineares e angular melhores que as da estação TC407.

Por fim, recomende-se a continuidade dos estudos realizados, para avaliar o comportamento da peça fabricada em outras situações, bem como a confecção da Base de Simulação de Deslocamento seja feita em material com melhor durabilidade, como por exemplo o alumínio.

REFERÊNCIAS

FROES, V. N. **TOPOGRAFIA BÁSICA**. Engenharia Civil. Pontifica Universidade Católica, PUC-GO, 2013.

MIRANDA, F. A., FAGGION P. L., VEIGA, L. A. **MÉTODO PARA O MONITORAMENTO DE PONTOS EM ÁREAS INSTÁVEIS**. Boletim de Ciências Geodésicas, sec. Artigos, Curitiba, v. 15, n° 4, p.498-513, outubro a dezembro, 2009.

SYGUEL, A. R.; FAGGION, P. L.; VEIGA, L. A. K.; NADAL, C. A.; MATTOS, M. S.; SOARES, M. A. **APLICAÇÃO DO MÉTODO DE IRRADIAÇÃO TRIDIMENSIONAL NO MONITORAMENTO DE BARRAGENS** Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 19, no 3, p.391-406, jul-set, 2013.

GEMAEL, C. INTRODUÇÃO AO AJUSTAMENTO DE OBSERVAÇÕES: APLICAÇÕES GEODÉSICAS. / CamilGemael, Alvaro Muriel Lima Machado, RomualdoWanndresen. - 2. ed - Curitiba: Ed. da UFPR, 2015. 181p.

GOMES, J. P. **DETERMINAÇÃO DE DESNÍVEIS DE PRECISÃO UTILIZANDO ESTAÇÃO TOTAL** Dissertação de mestrado - Curso de Pós Graduação em Ciências Geodésicas da Universidade Federal do Paraná, 2006.

PINHO, C. B. EXECUÇÃO DE LEVANTAMENTO GEORREFERENCIADO PARA CERTIFICAÇÃO NO INSTITUTO NACIONAL DE COLONIZAÇÃO E REFORMA AGRÁRIA – INCRA. Monografia. Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, 2010.

INCOMPLAST ESPECIALISTA EM POLÍMEROS E METAIS. **MATERIAL NYLON PA.** Disponível em: <<u>http://www.incomplast.com.br/nylonpa</u>> Acesso em: 01 de julho de 2017.

APÊNDICE 1 – ALGORITMO PARA AJUSTAMENTO DO CIRCULO

%Modelo Matematico $%(Xp - Xc)^{2} + (Yp - Yc)^{2} = R^{2}$ %Carregamento dos pontos xy = dlmread('pontos2.txt'); [npontos,ncol] = size(xy(:,1)); %Vetor das Observações (Lb) Lb = [xy(:, 1); xy(:, 2)];%Matriz dos Pesos (P) P = eye(2*npontos);Pesos das Observaçoes P = inv(P);%Solução Inicial (Xo) Xo(1) = mean(xy(:,1));Xo(2) = mean(xy(:,2));Xo(3) = mean(sqrt((xy(:,1)-Xo(1)).^2 + (xy(:,2)-Xo(2)).^2)); Xo = Xo';fim = false; itera = -1; while(~fim) itera = itera+1; fprintf('Iteração: %d \n', itera); %Vetor Erro de Fechamento (W) for i = 1:1:npontos $W(i,1) = (xy(i,1)-Xo(1))^{2} + (xy(i,2)-Xo(2))^{2} - Xo(3)^{2};$

clear

clc

end

col = 1;

for
$$i = 1:1:npontos$$

 $B(i, col) = 2^{*}xy(i, 1) - 2^{*}Xo(1);$

 $B(i, col+1) = 2^{*}xy(i,2) - 2^{*}Xo(2);$

col = col + 2;

end

%Derivadas em relação aos parametros (A)

for i = 1:1:npontos

A(i, 1) = 2 Xo(1) - 2 Xy(i, 1);

A(i, 2) = 2 Xo(2) - 2 xy(i,2);

$$A(i, 3) = -2 Xo(3);$$

end

%Matriz M

 $M = B^*inv(P)^*B';$

%Vetor das Correções (X)

```
X = -inv(A'^*inv(M)^*A)^*(A'^*inv(M)^*W);
```

%ParametrosAjustasdos (Xa)

```
Xa = Xo + X;
```

%Tolerancia

```
fim = max(abs(X)) < 10E-6 | itera>20;
```

%Nova Solução Inicial

Xo = Xa;

end

%Vetor Lagrangiano (K)possibilita o calculo da VarPost

 $K = -inv(M)^{*}(A^{*}X+W);$

%Residuos (V)

 $V = inv(P)^{*}B'^{*}K;$

%Valores Observados Ajustados (La)

La = Lb + V;

%Variancia a Posteriori

varpost = (V'*P*V)/(npontos-3);

%MVC dos parametros

 $MVC = inv(A'^{*}inv(M)^{*}A);$

%Desvio Padrao dos parametros

sigmaP = sqrt(diag(MVC))*varpost;

%MVC das observações ajustadas

MVC = varpost*(inv(P)-inv(P)*B'*inv(M)*B*inv(P));

%Desvio Padrao das observações ajustadas

sigmaO = sqrt(diag(MVC))*varpost;

%Arquivo de Saida com os parametros e seus desvios

fid = fopen('Parametros Ajustados2.txt','wt');

fprintf(fid,'Parametros Ajustados2 \n');

fprintf(fid,'Xc, Yc, r \n\n');

for *i* = 1:1:3

fprintf(fid,'%f %f\n', Xa(i), sigmaP(i));

end

fprintf(fid, \\nVariancia a Posteriori = %f\n', varpost);

fprintf(fid,'\nNº iterações = %d\n', itera);

APÊNDICE 2 – COORDENADAS (X,Y) DOS PONTOS UTILIZADOS PARA O ARQUIVO DE ENTRADA DO AJUSTAMENTO

X	Y
3.023	-13.993
3.023	-13.993
3.023	-13.992
3.023	-13.993
3.023	-13.991
3.023	-13.992
3.023	-13.992
3.023	-13.992
3.023	-13.993
3.023	-13.991
3.023	-13.992
3.023	-13.992
3.023	-13.994
3.004	-14.013
2.948	-14.010
2.951	-13.926
2.994	-13.919
3.015	-13.933
3.028	-13.977
2.996	-14.016
2.941	-14.002
2.934	-13.944
2.984	-13.918
3.021	-13.939

3.021	-13.992
2.980	-14.020
2.948	-14.009
2.929	-13.967
2.959	-13.921
2.997	-13.921
3.021	-13.942
3.027	-13.980
3.003	-14.013
2.963	-14.015
2.927	-13.989
2.935	-13.940
2.965	-13.920
3.011	-13.930
3.027	-13.978
2.997	-14.015
2.960	-14.014
2.933	-13.991
2.967	-13.919
3.009	-13.926
3.028	-13.957
3.006	-14.011
2.955	-14.012
2.930	-13.981
2.965	-13.919
3.019	-13.939
3.010	-14.008
2.928	-13.970
3.015	-13.933
3.014	-13.999

2.955	-14.013
2.935	-13.939
3.004	-13.924
3.028	-13.979
2.967	-14.017
2.937	-13.936
3.023	-13.944
2.988	-14.017
2.929	-13.968
3.012	-13.930
2.995	-14.015
2.936	-13.941
3.023	-13.948
2.977	-14.018
2.929	-13.978
3.022	-13.944
2.982	-14.018
2.956	-13.922
3.021	-13.942
3.012	-14.007
2.963	-14.015
2.930	-13.967
3.024	-13.947
3.001	-14.015
2.928	-13.968
3.003	-13.923
3.022	-13.992
2.967	-14.016
2.935	-13.941
3.007	-13.927

3.028	-13.956
2.972	-14.017
2.929	-13.972
3.013	-13.931
3.008	-14.008
2.967	-14.017
2.932	-13.988
2.949	-13.927
3.007	-13.925
3.029	-13.961
3.007	-14.010
2.951	-14.010
2.948	-13.928
3.013	-13.931
3.003	-14.009
2.941	-14.002
2.941 2.978	-14.002 -13.917
2.941 2.978 3.024	-14.002 -13.917 -13.948
2.941 2.978 3.024 3.007	-14.002 -13.917 -13.948 -14.009
 2.941 2.978 3.024 3.007 2.929 	-14.002 -13.917 -13.948 -14.009 -13.977
2.941 2.978 3.024 3.007 2.929 2.970	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918
2.941 2.978 3.024 3.007 2.929 2.970 3.026	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936 2.995	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995 -13.919
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936 2.995 3.029	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995 -13.919 -13.919
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936 2.995 3.029 2.994	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995 -13.919 -13.973 -13.973
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936 2.995 3.029 2.994 2.932	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995 -13.919 -13.973 -14.016 -13.947
2.941 2.978 3.024 3.007 2.929 2.970 3.026 2.994 2.936 2.995 3.029 2.994 2.994 2.932 3.024	-14.002 -13.917 -13.948 -14.009 -13.977 -13.918 -13.947 -14.017 -13.995 -13.919 -13.973 -14.016 -13.947 -13.948

2.942	-13.933
3.028	-13.959
2.971	-14.018
2.956	-14.013
2.930	-13.982
2.964	-13.921
3.015	-13.933
3.001	-14.013
2.939	-13.936
3.029	-13.961
2.931	-13.987
3.021	-13.942
2.967	-14.017
2.931	-13.952
2.964	-13.920
3.004	-13.924
3.004 3.001	-13.924 -14.013
3.004 3.001 2.933	-13.924 -14.013 -13.947
3.004 3.001 2.933 3.030	-13.924 -14.013 -13.947 -13.962
3.004 3.001 2.933 3.030 2.929	-13.924 -14.013 -13.947 -13.962 -13.980
3.004 3.001 2.933 3.030 2.929 3.020	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995
3.004 3.001 2.933 3.030 2.929 3.020 2.931	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -13.919
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992 2.954	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -14.017 -13.923
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992 2.954 3.028	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -14.017 -13.923 -13.923
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992 2.954 3.028 2.928	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -14.017 -13.923 -13.970 -13.965
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992 2.954 3.028 2.928 3.023	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -14.017 -13.923 -13.970 -13.965 -13.946
3.004 3.001 2.933 3.030 2.929 3.020 2.931 2.995 2.992 3.028 3.028 3.023 2.985	-13.924 -14.013 -13.947 -13.962 -13.980 -13.995 -13.991 -13.919 -14.017 -13.923 -13.970 -13.965 -13.946 -13.946

3.014	-13.932
2.977	-14.018
2.985	-13.917
2.986	-14.017
2.960	-13.921
2.971	-14.017
3.003	-13.923
2.963	-14.014
3.022	-13.944
2.957	-14.012
2.952	-13.924
3.025	-13.987
2.977	-14.018
2.941	-13.933
3.030	-13.969
2.949	-14.010
3.000	-13.922
2.972	-14.018
2.956	-13.923
3.029	-13.964
2.960	-14.013
2.939	-13.935
3.015	-13.933
3.020	-13.997
2.947	-14.008
2.990	-13.917
3.004	-14.012
2.933	-13.947
3.021	-13.940
2.959	-14.014

2.980	-13.917
3.012	-14.009
2.943	-13.930
3.023	-13.987
2.946	-13.930
3.030	-13.962
3.014	-14.005
2.949	-14.010
2.983	-13.917
3.028	-13.970
3.012	-14.008
2.932	-13.944
3.008	-13.927
3.014	-14.005
2.928	-13.964
3.028	-13.960
2.928	-13.961
3.029	-13.963
2.931	-13.985
3.027	-13.980
2.956	-13.923
3.024	-13.950
3.006	-14.012
2.929	-13.976
3.017	-13.936
2.965	-14.017
2.952	-13.924
3.013	-13.929
2.999	-14.014
2.943	-14.004

2.936	-13.940
2.989	-13.918
3.022	-13.940
3.025	-13.991
2.982	-14.018
2.954	-14.013
2.930	-13.958
2.960	-13.921
3.009	-13.926
3.023	-13.945
3.028	-13.959
3.029	-13.969
3.009	-14.008
2.951	-14.009
2.930	-13.979
2.954	-13.925
2.984	-13.917
3.012	-13.929
3.020	-13.941
3.028	-13.972
3.017	-13.998
2.985	-14.017
2.959	-14.014
2.941	-14.002
2.931	-13.952
2.956	-13.922
2.983	-13.918
3.012	-13.931
3.023	-13.947
3.027	-13.981

3.021	-13.996
2.980	-14.018
2.958	-14.014
2.937	-13.996
2.934	-13.943
2.960	-13.922
2.985	-13.917
3.006	-13.925
3.025	-13.952
3.022	-13.992
2.977	-14.019
2.943	-14.006
2.934	-13.946
2.979	-13.918
3.010	-13.928
3.029	-13.966
3.024	-13.992
2.974	-14.019
2.956	-14.013
2.950	-13.930
3.022	-13.995
2.930	-13.981
3.027	-13.955
3.018	-13.999
2.953	-14.011
3.008	-13.927
3.005	-14.010
2.935	-13.995
3.026	-13.953
2.958	-14.014
- 2.945 -13.929
- 2.981 -13.917
- 3.022 -13.944
- 3.026 -13.954
- 3.004 -14.012
- 2.955 -14.013
- 2.931 -13.949
- 2.985 -13.917
- 3.020 -13.939
- 3.025 -13.987
- 2.972 -14.018
- 2.927 -13.987
- 2.944 -13.931
- 2.990 -13.918
- 3.024 -13.950